Solving Online Threat Screening Games using Constrained Action Space Reinforcement Learning

Sanket Shah¹, Arunesh Sinha¹, Pradeep Varakantham¹, Andrew Perrault², Milind Tambe²

¹Singapore Management University, ²Harvard University

Problem Description

Aim: Find the best Defender mixed strategy in this Stackelberg Security Game

Attacker Utility *U*

Metric attacker wants to maximise eg: Number of Fatalities

The **Security Risk** is the expected utility of the attacker

Delay

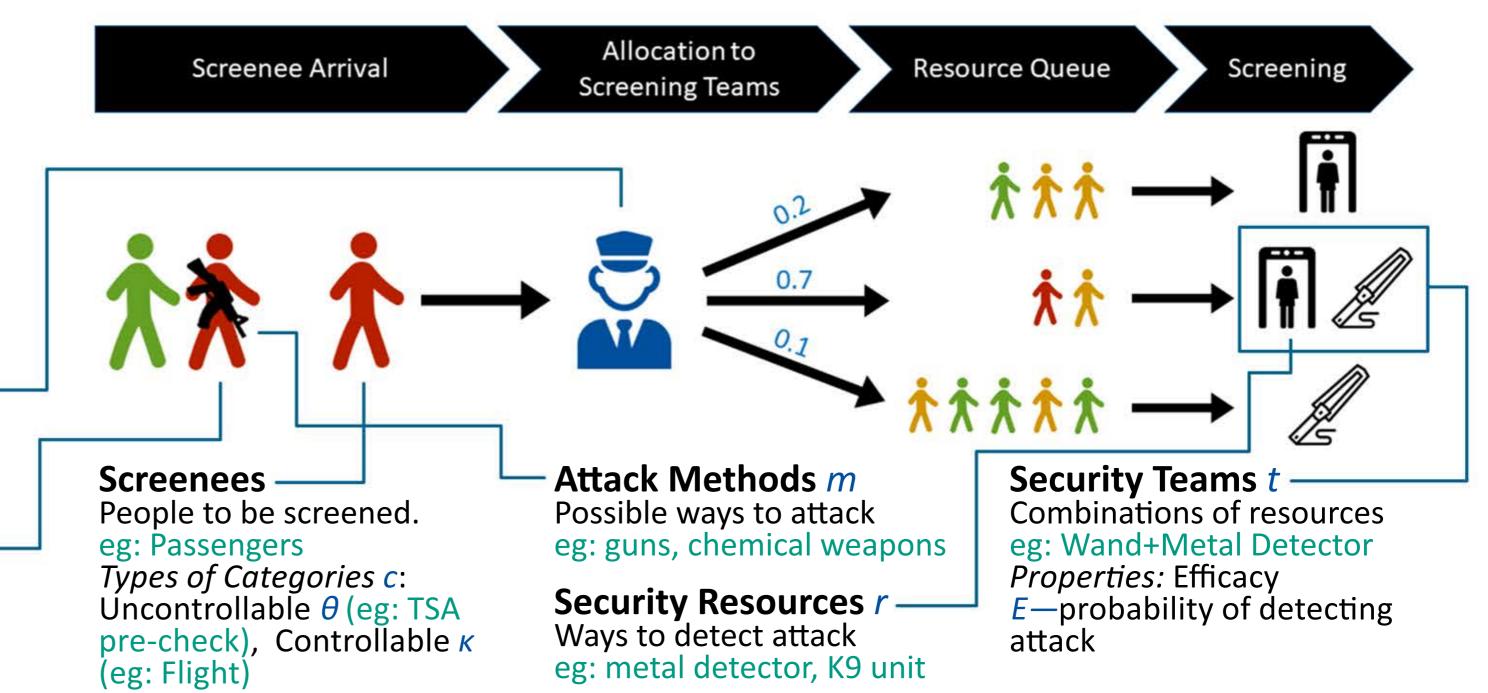
Time taken to get to front of the queue For a security team, delay is max of delay across constituent resources

Defender

Goes first. Chooses a mixed strategy that minimises a combination of Security Risk and Delay.

Attacker

Goes second. Impersonates a screenee to maximise utility. Can be thought of as the worst-case among screenees that arrive.



Past Work & Motivation

- Multi-objective problem: Security Risk and Delay. Past work focuses on minimizing Security Risk
- Limitations:
- Has a roundabout notion of Delay (encoded in the idea of 'time windows'). Because they can't effectively quantify Delays, generated policies are suboptimal.
- · Modeled as offline optimization; most threat screening is online
- Unscalable and pessimistic approach to screenee arrival uncertainty

Contributions

- Turn problem on its head, find Pareto optimal point by minimizing Delay with a constraint on Security Risk.
- Allows us to model the game as an MDP, which addresses limitations:
- MDP is online: uncertainty in screenee arrival is more natural
- Minimize exact delay using rewards
- Security Risk bounded by linear constraints on action space
- Solve MDP using Deep RL with novel constraint enforcement strategy.

MDP Model

- **State**: Information about the current screenee along with context. Formally, consists of the tuple $\langle c, \xi, h, \tau \rangle$. Here c is the screenee category, ξ is the queue information, h is a summary of the history and τ is the wallclock time.
- Action: Mixed strategy π , i.e., probability of assigning screenee to each security team. Probability of detection z is a linear function of this action and Security Risk, in turn, is a linear function of z.

$$z_m = \sum_{t \in T} E_{t,m} \pi_t$$

 $P_{\theta}(z_m U_{\kappa,m}^+ + (1 - z_m) U_{\kappa,m}^+) \le \psi_{\theta}, \forall m$

As a result, security risk can be bounded by linear constraints on the actions.

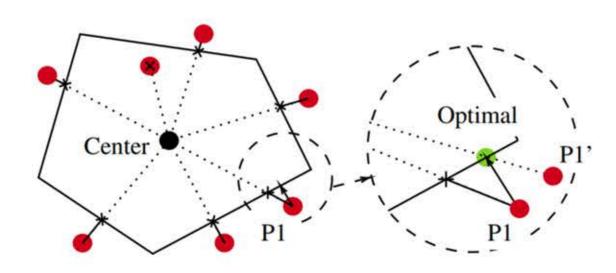
- Reward: -1 * Delay
- Transitions: Update context and get info about the next screenee

Overall Solution Method

- Solve using Deep RL: Deep Deterministic Policy Gradients (DDPG)
- Enforce constraints by appending novel projection layer to 'actor' network.

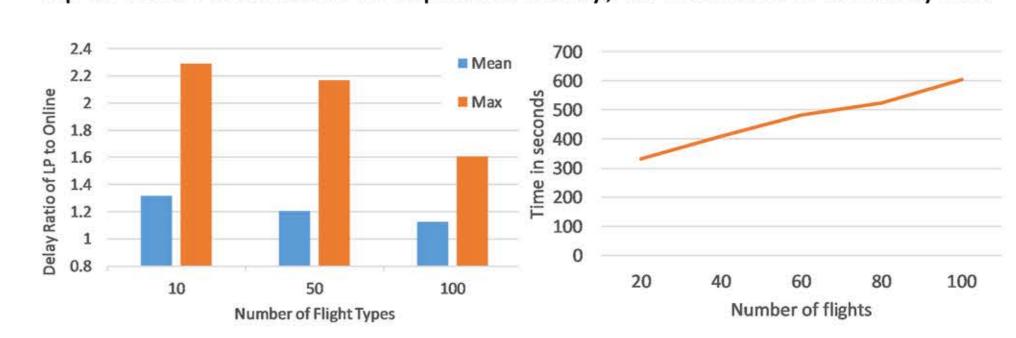
Enforcing Constraints

- Security domain; must enforce hard constraints on the security risk.
- Incorporate constraint enforcement as layer in the network
- Input: unconstrained action; Output: constrained action
- Past work: QP that minimizes L2 distance between constrained and unconstrained actions and backprops through it
 - Slow (DDPG requires many iterations to converge)
- Our work: minimises distance from fixed internal point.
- Also enforces constraints, runs quickly and can be written in few lines of TensorFlow



Experiments

• Up to 100% reduction in expected Delay; no increase in security risk



• Scales well and can be applied to real-world scenarios