
1 2 3

Acknowledgements
Sanket Shah was supported by the ARO under Grant Number: 
W911NF-18-1-0208. Bryan Wilder was supported by NSF (Award 
Number 2229881). The views and conclusions contained in this 
document are those of the authors and should not be interpreted as 
representing the official policies, either expressed or implied, of the NSF, 
ARO or the U.S. Government. 

Results
We evaluate the performance 
of our approach on the same 
three domains as our closest 
related work (LODLs).

In terms of In terms of performance, we 
find that our approach 
(EGLs) can perform on par 
with (or better than) LODLs 
with an order of magnitude 
fewer samples (32 vs 2048).

In terms of In terms of computational 
cost, this translates into a 16x 
speedup in learning loss 
functions over past work.

We believe that these We believe that these 
improvements bring DFL 
one step closer to being 
accessible in practice.

Contribution 2: Feature-Based
Parameterization
In Step 3, we have to learn a loss function, i.e., the decision quality 
induced by an arbitrary prediction. For a WeightedMSE type loss 
function, this involves learning the weights associated with each 
parameter such that the resulting loss function approximates the (regret 
in) decision quality. So, the higher the weight, the more an error in this 
parameter leads to a change in decision quality.

Past work tries to learn all these weights independently, which is easy Past work tries to learn all these weights independently, which is easy 
from an optimization perspective but sample inefficient. Instead, in this 
paper, we learn a single mapping (e.g., neural network) from the features 
associated with a parameter to its corresponding weight.

Contribution 1: Model-Based Sampling

There is a circular dependency involved in sampling predictions in Step 1 of learning 
the decision loss. The desired predictions depend on the predictive model, but the 
predictive model in turn depends on the loss function which uses these predictions as 
input. However, despite this, it is important to generate realistic predictions; the 
underlying decision loss is complex and we’re unlikely to be able to accurately model 
it for arbitrary predictions.

To generate realistic predictions, we sample predictions from the output of predictive To generate realistic predictions, we sample predictions from the output of predictive 
models trained on the MSE loss across (a) different random initializations, and (b) 
different points in their training trajectory. While this does not generate the exact 
predictions that will be encountered while training the predictive model, we believe 
that it does a good job of characterizing the “space” of realistic predictions.

Challenge: Computational Cost
Learning these decision losses can be expensive and most of the time is typically 
taken by Step 2, in which we need to make calls to some optimization solver to 
compute the “decision quality” for our sampled predictions. However, reducing the 
cost of solving arbitrary optimization problems is difficult. Instead, we modify steps 
1 and 3 to be more sample efficient, so we need to make fewer calls to the 
optimization solver for similar performance.

Step 1: Generate samples of possible predictions
Step 2: Calculate the “Decision Quality” for sampled predictions
Step 3: Fit a “decision loss” for each decision-making instance, i.e., for each set of 
“true parameters”

Learning Decision Losses

The Predict-Then-Optimize pipeline can be interpreted as being a loss in 
itself. While the actual form of the Decision Loss (DL) is complex, we 
use supervised learning to approximate this mapping.

Decision Loss

Predict: Click-through rates for 
different (website, demographic) 
combinations from website metadata.
Optimize: Choose the subset of 
websites that maximize the number of 
people that click on the ad at least once.
Evaluate:Evaluate: How many people would 
have actually clicked on the ad if we 
advertised on websites 1 and 3?

Example: Web Advertising

There are three steps in Predict-then-Optimize (PtO). In the Predict step, 
a predictive model is used to make predictions about “parameters” based 
on some features. Next, in the Optimize step, these predictions are used 
to parameterize an optimization problem, whose solution yields a “deci-
sion”. Finally, in the Evaluate step, the produced decision is evaluated 
based on how well it performs on the “true parameters”. 

Setting

TL;DR: We propose two improvements to learning loss functions 
for Predict-then-Optimize that make them more computationally 
efficient to learn and deploy. 

Leaving the Nest 
Going Beyond Local Loss Functions for Predict-Then-Optimize
Sanket Shah1, Bryan Wilder2, Andrew Perrault3, Milind Tambe1


